
Development of a Cross-Platform Artificial Neural Network... 97

Development of a Cross-Platform Artificial Neural Network
Component for Intelligent Systems

Gültekin B. Çetiner1 and H.M. Aburas2

Department of Industrial Engineering,
Faculty of Engineering, King Abdulaziz University,

P.O. Box 80204 Jeddah 21589, Saudi Arabia
1gultekin@drcetiner.org and2 haburas@kau.edu.sa

Abstract. In recent years, cross-platform application development has
become a major issue in the area of information systems technology.
Modeling and design tools have been developed for multiple plat-
forms due to their potential capability in many environments. Unified
Modeling Language (UML), as an example, combines all stages of
application development life cycle, and generates cross-platform
codes using object-oriented methodology. Artificial Neural Networks
(ANNs) have been adapted extensively for solving a wide range of
problems efficiently. Nowadays, systems need to be developed within
the shortest possible time because of the competence in the market.
Therefore, one needs a quicker way of embedding ANNs into Soft-
ware Development Life Cycles on multiple platforms. This approach
requires a cross-platform ANN tool. This paper describes a compo-
nent that is suitable for UML environment and discusses some of its
features. Finally, two case studies are presented in order to illustrate
the usefulness of the suggested component.

Keywords: Neural Networks, Component Based Intelligent System
Development, Cross-Platform Application Development.

1. Introduction

Artificial Neural Networks (ANNs) have been used successfully for solving
problems in many areas ranging from computer vision to business forecasting
via the available data[1]. Nowadays, systems need to be developed within the

97

JKAU: Eng. Sci., Vol. 16 No. 2, pp: 97-113 (2005 A.D. / 1426 A.H.)

G.B. Çetiner and H.M. Aburas98

shortest possible time because of the competence in the market. Therefore, we
should have a quicker way of embedding ANNs into our software development
life cycle.

 Neural networks are composed of a large number of interconnected units
divided into input, output, and hidden nodes. A single processing unit merely
sums up the weighted activation on its inputs, transforms this sum according to
an activation function, and passes the resulting function to its output. Therefore,
in general terms, information processing in neural networks consists of the units
transforming their input into some output, which is then modulated by the
weights of connections as inputs to other units. Learning in these systems is
defined in terms of the total adjustments of the weights continuously so that the
network�s output tends toward the desired output without involving changes to
the structure of the network. Neural networks are trained by specifying some
constraints such as learning parameters, network structure, and training exam-
ples. When learning is complete, or stopped at an adequate level, knowledge is
said to be represented by the optimized connection weights among processing
units in the entire network.

Unlike traditional expert systems where a knowledge base and necessary
rules have to be defined explicitly, neural networks do not need rules. They,
instead, generate rules by learning from given examples. This makes ANNs
general purpose classification tools to be used in pattern recognition and classi-
fication systems. Neural networks provide a closer approach to human percep-
tion and recognition than traditional computing. When inputs are noisy or
incomplete, neural networks can still produce reasonable results. Neural networks
are used successfully in many areas such as Natural Language Processing, Speech
Processing, Data Compression, Computer Security, Image Recognition (Optical
Character Recognition, Texture Classification, Handwriting Recognition, Target
Classification, Industrial Inspection), Optimization problems, Signal processing
(Prediction, System Modeling, Noise Filtering, etc.), Financial and Economic
Modeling and Control Systems. There are other areas in which neural networks
might be applied successfully. One of these areas includes intelligent
e-commerce applications in which customer buying intentions are recognized
by the vendors. Possibility and ease of the use in many areas make ANNs an
ideal solution for many intelligent systems[2]. However, embedding Neural
Networks into such systems in shorter time limits is also important for the
current software development projects.

 Such constraint requires the use of Rapid Application Development (RAD)
environments based on modeling approaches (specifically object oriented ones)
to analyze, design, and build systems. Computer Assisted Software Engineering
(CASE) Tools help developers building a system in very short time. This

Development of a Cross-Platform Artificial Neural Network... 99

approach, also known as model driven development, makes use of a set of
Object-oriented Modeling notations called Unified Modeling Language (UML)
that supports many of the object-oriented languages[3]. Another method namely
Fusion method developed by the Object-oriented Design Group at Hewlett
Packard Laboratories, Bristol builds on existing, first generation, methods, and
provides a direct route from a requirements definition through to a program-
ming language implementation[4].

A software component has been described in this paper to embed ANN func-
tionality into such applications. Architecture of the component is designed in an
object-oriented fashion for the purpose of building such applications easily. In
addition, the paper describes a component that is suitable for UML environment
and discusses some of its features. Finally, two case studies are presented in
order to illustrate the usefulness of the suggested component.

2. Cross-Platform Applications Development

While Cross-platform means the ability of using a piece of software under
different platforms (usually different operating systems), there are various ways
to achieve this. There is a need of business analysis as a distinct stage during the
Information Systems (IS) development process. A modeling methodology in
order to be capable of modeling the business analysis stage should be able to
provide sufficient level of abstraction and business analysis specific concepts
that represent the organization independent of any design or implementation
issues. The spiral model in Object-oriented software development is preferred
to the waterfall model since there exists a lot of similarity in the modeling
concepts used in business analysis in IS development and Object-oriented Anal-
ysis in Object-oriented software development[5]. Software integration is an
important and useful approach to software reuse and cross-platform develop-
ment. Most of software integration approaches use data-integration paradigm,
i.e., a common data format and (or) source code are required for integration. In
a functional integration approach suggested[6], software is integrated by func-
tionalities. No common data format or source codes of the integrated softwares
are required in their approach. However, instead of a common data or source
code, they had to develop a specification language[6]. Here a computer program-
ming language (and a visual development environment) that is capable of work-
ing with multiple operating systems is employed for developing cross-platform
information systems. This language has to provide extensive capabilities for
cross-platform visual development. One way of achieving this might be to use a
platform independent language such as Java or C. The resulting application
developed by using a Cross-Platform Language may be run under both
Windows and Linux Operating Systems. However, demanding requirements for

G.B. Çetiner and H.M. Aburas100

 Some of the important classes used in development of cross-platform ANN
component are as follows:

● TObject is the ultimate ancestor of all CLX objects and components and
encapsulates fundamental behavior common to CLX objects by introducing

visual development suggest different alternatives since Java is slow as being a
run-time interpreter and C is lacking standard libraries needed for cross-platform
visual functions supporting relational databases in intelligent information
systems. An ideal alternative is a development environment specifically designed
for cross-platform application development with extensive graphical, relational
database design capabilities. This alternative should also have a common object-
oriented programming language with a standardized set of libraries common to
both platforms. Delphi1 and Kylix2 are chosen for this purpose. Both Delphi and
Kylix are object-oriented, visual programming environments for rapid develop-
ment of highly efficient cross-platform applications with a minimum of manual
coding. They provide a common comprehensive class library called the Borland
Component Library for Cross Platform (CLX) and a suite of Rapid Application
Development (RAD) design tools with extensive graphic and database capabil-
ities. The Cross-Platform Artificial Neural Network (ANN) component described
herein makes use of this CLX library components and objects in a truly object-
oriented fashion. Figure 1 shows some of the main classes available in CLX
library. This class hierarchy actually shows inheritances for Cross-Platform Arti-
ficial Neural Network component starting from TObject.

Fig. 1. General schema of CLX library used in artificial neural network component.

1,2Delphi and Kylix are both trademarks of Borland Corporation running under Windows and Linux platforms
respectively. The main language for both is object-Pascal with extensive libraries for Rapid Application
Development.

Development of a Cross-Platform Artificial Neural Network... 101

methods that create, maintain and destroy instances of the object by allocating,
initializing, and freeing required memory and implementing other important
functions.

● TPersistent is the ancestor for all objects that have assignment and stream-
ing capabilities (reading from and writing to various kinds of storage media,
such as disk files, dynamic memory, and so on).

● TComponent is the common ancestor of all components that can appear in
the form designer and has the capabilities of appearing on Component palette
and be manipulated in the form designer, owning and managing other compo-
nents, and having enhanced streaming and filing capabilities.

● TControl is the base class for all components that are visible at runtime.
The controls are visual components, meaning the user can see them and possi-
bly interact with them at runtime. All controls have properties, methods, and
events that describe aspects of their appearance, such as the position of the
control, the cursor or hint associated with the control, methods to paint or move
the control, and events that respond to user actions.

● TGraphicControl is the base class for all lightweight controls. It supports
simple lightweight controls that do not need the ability to accept keyboard input
or contain other controls. TGraphicControl provides a Canvas property for
access to the control's drawing surface and a virtual Paint method called in
response to paint requests received by the parent control.

● TImage displays a graphical image on a form. It is a base class for draw-
ing, saving, and loading Artificial Neural Network structures by using proper-
ties and methods available in its TPicture property.

Figure 2 shows the object hierarchy in well-known object-oriented Unified
Modeling Language (UML) notations. The seven objects are not shown in detail
since they are available in manuals of Delphi, C++ Builder, and Kylix.

3. Cross-Platform Artificial Neural Network Component

A preliminary study has been made by the authors for the Artificial Neural
Networks component described herein and a concise introduction has been
given without any proper case study[7]. It also lacked some of the main features
such as Cross-Platform ability addressed within this paper. This paper also
describes the component in more detail by two case studies to illustrate its
usefulness.

Artificial Neural Network component herein is a general purpose cross-
platform component to be used under Delphi, C++ Builder and Kylix develop-
ment environments to develop intelligent programs ranging from signal process-

G.B. Çetiner and H.M. Aburas102

ing to intelligent internet applications. The component is based on a Multi-
Layer Perceptron with Back Propagation Algorithm[8]. It supports other
concepts to cope with some learning problems. It has a momentum coefficient
to help the network escape from local minima problems and also a parameter of
learning rate which regulates the speed of conversion during training. It also
supports biases to all hidden layers and output layer. The transfer function used
in each neuron of hidden layers, and output neurons is currently sigmoid func-
tion. But other functions such as hyperbolic tangent and others may be added to
the component easily. It uses a mixture of Artificial Neural Network Technology
to converge to correct solutions with shorter training times. It is quite flexible
and accepts different ranges of inputs and outputs defined by the user. Network
allows any number of hidden layers and the structure of the network can be
visually displayed as in Fig. 3. When inserting 9 numbers to the network prop-
erty at design-time, a seven hidden layer network is created automatically with
the related number of neurons in each layer.

Fig. 2. UML description for T Neural Network component.

Development of a Cross-Platform Artificial Neural Network... 103

The three application development environments mentioned above use Rapid
Application Development (RAD) strategies for rapid development of applica-
tions for deployment on Windows and Linux Operating Systems. They are
based on well defined component libraries for this purpose. These class libraries
are made up of objects, some of which are components or controls. Components
are subset of objects and can be manipulated at design time without writing
code. Components are objects in the true object-oriented programming (OOP)
sense since they

◆ encapsulate a set of data and data access functions
◆ inherit data and behavior from the objects they are derived from
◆ operate interchangeably with other objects derived from a common ances-

tor, through a concept called polymorphism.

Building intelligent applications using databases (single-tier or multi-tier),
internet and intranet, and graphics is easy by using ANN component with other
components. Furthermore, embedment of Computer Aided Software Engineer-
ing (CASE) tools make this process much easier by automating source code
generation from class and object definitions. The class and object definitions
may be categorized and reused by design patterns specific to some problem
areas[9].

Cross-platform Artificial Neural Network component is a general purpose
component and adding the functionality to an application is as easy as dropping an
instance of component onto the design form as in Fig. 4. Using object-oriented
modeling tools, this component could be added to the Unified Modeling Language
(UML) diagrams of the system such as class diagrams just like other objects and
the whole process can then be automated to obtain the source at the end.

The properties and methods in TNeuralNetwork component are described
throughout the following implementation phases:

Fig. 3. Network after defining values in Network property on the left.

G.B. Çetiner and H.M. Aburas104

● Defining the Network Structure.
● Initialization.
● Specifying minimum and maximum values for inputs and outputs.
● Training.
● After Training.
● Using the Trained Network.

3.1 Defining the Network Structure

Network property of the component is the most important property and it
defines the structure of the network. By setting the values of this property we
can define the number of inputs, number of hidden layers, neurons in each
hidden layer, and the number of outputs. If we want to construct a network as
shown in Fig. 3, we can specify 2, 3, 2 and 1 values using object inspector
during design time. To define the structure of the network run-time, just add the
following codes:

nn1.Network.clear;
nn1.Network.Add('2');

Fig. 4. Adding an instance of ANN component onto design form.

Development of a Cross-Platform Artificial Neural Network... 105

nn1.Network.Add('3');
nn1.Network.Add('2');
nn1.Network.Add('1');

3.2 Initialization

 The individual properties set by Network property can be accessed at run-
time using read-only NumberOfInputs, NumberOfLayers, NumberOf-Outputs
properties. We can display the graphical structure of the network by calling the
DrawNetwork method. The following code displays the network structure and
saves the image as bitmap file on the hard disk. Due to object-oriented design,
the picture property inherited from TImage makes it very easy to save or load
network at any time.

nn1.DrawNetwork;
nn1.Picture.SaveToFile('c:\network.bmp');

NeuronWidth property can be used to change the size of the neurons in neural
net picture. After the network structure is defined, the network has to be initial-
ized using the initialize method. This can be done by just writing the following
code:

nn1.initialize(true);

Each initialization step verifies the structure of the network and assigns
random values. After initialization, the learning process has to be repeated if the
network is not saved. Therefore, before initialization, the network needs to be
stored using SaveNetwork method. True parameter in heading initializes the
built-in random number generator with a random value (obtained from the
system clock) so that each initialization assigns completely different random
values to connection weights. False parameter starts initialization with the same
set of random values. LearningRate and MomentumRate are two important
properties which affect learning curve. Since they are design and run-time prop-
erties, they can be changed during run-time or they can be fixed at the begin-
ning of learning.

Initialized is run-time and read-only property to query whether the network is
initialized. This is important because each network structure has to be initialized
before training. We can ensure the network is initialized before training by
implementing the following code:

if not nn1.Initialized then
nn1.Initialize(True);

G.B. Çetiner and H.M. Aburas106

3.3 Specifying Minimum and Maximum Values for Inputs and Outputs

The minimums and maximums have to be supplied for both inputs and
outputs before starting the training phase. The methods available for this
purpose are:

SetInputMinimums, SetInputMaximums, SetOutputMinimums,
Set-OutputMaximums, SetAllOutputRange and SetAllInput
Range.

 SetAllOutputRange and SetAllInputRange methods are the easiest way to
perform this. As an example, the following code specifies all input-output mini-
mum values to 5, and maximum values to 10.

nn1.SetAllInputRange(5,10);
nn1.SetAllOutputRange(5,10);

For specifying the minimum and maximum values for each individual input
or output following methods might be used.

SetInputMinimums, SetInputMaximums, SetOutputMinimums
and Set-OutputMaximums.

3.4 Training of Neural Network

Training of the network is an iterative process. For each iteration, the
network has to be supplied with inputs and their associated outputs using Set-
Inputs and SetExpectedOutputs methods, respectively. The ranges of the inputs
and outputs have to conform the ones specified by SetInput-Minimums, Set-
InputMaximums, SetOutputMinimums, SetOutputMax-imums, SetAllOutputRange
or SetAllInputRange methods. The following code sets inputs and desired
outputs for this input set:

nn1.SetInputs(input);
nn1.SetExpectedOutputs(Desired);

After setting inputs and outputs, the Train method can be used to train
network for one cycle as follows:

nn1.Train;

Following the Train method, RMSError (Rooted Mean Square Error) property
is calculated automatically. This read-only value can be used to draw an error
graph to track the learning process. A different set of input and corresponding
output values are presented to the network during each training iteration. The
iteration may be stopped after a satisfied RMSError level or a predefined maxi-
mum iteration number is reached. It is suggested that the examples should be
presented to the network in a completely random fashion.

Development of a Cross-Platform Artificial Neural Network... 107

3.5 After Training

When the learning is completed, or at least a satisfactory RMSError level is
reached, the network must be saved using SaveNetwork method. SaveNetwork
method saves the weights and input-output minimums and maximums of the
network to use for recognition and other purposes. The next section describes
the recognition phase.

3.6 Using the Trained Network

The network should be saved after it learns all patterns. As soon as the
network is trained or loaded from a file it can be used for recognition purposes.
To present an unknown input pattern to the network and to get the answer from
it, the following steps are needed:

1. Use SetInputs to specify the input neurons.
2. Use Recall method to query the network.
3. Use GetOutputs method to get the answer of the network regarding the

outputs for the inputs at Step 1.

RecallOutputs can also be used to specify the input pattern and to get the
outputs. In this case the first three steps are not needed.

4. Case Studies

Two case studies are described in this section to illustrate the ease of use of
the suggested Artificial Neural Networks Component. The following two
sections define the problems in both case studies together with solutions.

4.1 Using Multiple Neural Networks in Parallel to Solve any Classifi-
cation Problem

Within this case study, the problem was to solve by the use of Neural
Network, any classification problem with sufficient inputs and corresponding
outputs. A generic application was developed for this purpose as shown in Fig.
5. The application uses 5 different instances of ANN component each having a
different number of hidden neurons in hidden layer. The number of hidden
neurons is same as number of inputs defined in the first step. The development
of this application took only one day. Many different linear problems such as
'logical and' and 'logical or' sets have been trained within a few minutes and
tested with high accuracy. However, the most important problems were the non-
linear ones. The screen shot shows the steps of solving a simple but yet a diffi-
cult non-linear problem known as 'logical xor'. Figure 6 compares a linear prob-
lem with 'logical or' and a non-linear problem with 'logical xor'. As seen from

G.B. Çetiner and H.M. Aburas108

The numbers of hidden neurons in networks were 2, 3, 4, 5, and 6. All of the
networks converged to solutions. However, the last network with 6 hidden
neurons gave the best result. The steps for classifying any set of data by means
of this sample application is as follows:

the figure, there is always misclassification with a linear separation line in 'logi-
cal xor' problem since the problem is a non-linear one whereas all the data in
'logical or' may be classified correctly.

Fig. 5. A sample program for solving any problem using any number of instances for ANN
component.

Fig. 6. Comparison of classifications from 'Logical or' and 'Logical xor'.

(a) Logical or' problem (a) 'Logical xor' problem

Development of a Cross-Platform Artificial Neural Network... 109

Step 1: Specification of number of inputs and outputs. The numbers of
inputs and outputs of the network and total number of data patterns are entered.
These parameters are used to create a blank grid to hold the required data. In
case of 2 inputs, and one output, and 4 as number of data, a grid with 4 rows
and 3 columns is created.

Step 2: Entering all data. After a grid with appropriate number of cells is
created, the data in cells may be entered one-by-one, or may be copied from MS
Excel sheet and pasted into the grid created in the first step. In this step, the
program may be rewritten to accept inputs from a database table or flat file.

Step 3: (a) Initializing Networks. All the networks are initialized with different
number of hidden neurons in hidden layer. All the weights between the neurons
of the input-to-hidden layers, hidden-to-hidden layers, and the last hidden-to-
output layers are assigned randomly. (b) Drawing Networks. This step is option-
al and it is used to draw networks. (c) Starting Training. The application starts
the training of all networks simultaneously. The object-oriented nature of the
component makes the creation of many instances of ANN object very easy.
Each network has different number of neurons in its hidden layer. Only one
hidden layer has been employed for all networks since one hidden layer was
found to be sufficient for all problems tried herein. If desired, it is very easy to
set any number of hidden layers and neurons in each layer.

After the RMS error of any network decreases to a sufficient level, the
network may be saved with all required parameters to be recalled later and
employed for classification of new data. In the final step, the best network is
chosen with the least RMS error.

This simple application illustrates the easiness of the component based develop-
ment. It may be used to solve any classification problem using Artificial Neural
Network component. It should also be noted that use of multiple neural network
instances with different parameters in parallel makes training time much less than
using one neural network. Any number of ANN component may be created in
design or run-time with different number of hidden layers and processing neurons,
and learning parameters. Learning parameters are either defined once at the begin-
ning, or increased or decreased during the execution of program. The best network
is then chosen based on the RMS error and saved to be used for recalling.

The component may be used easily for developing web based and database
applications. Due to component based development, a number of components
may be dropped onto a form with different learning parameters and structures.
The best network architecture is then chosen based on RMS and saved to be
used later. The component currently saves the results on a flat file. However,
the results can be assigned to another standard component or stored in a data-
base file by making small changes.

G.B. Çetiner and H.M. Aburas110

4.2 Using ANN Component to Solve Optical Character Recognition
(OCR) Problem

The second small application was developed to solve Optical Character
Recognition Problem by employing Haralick features which were successfully
used in classifying textured images[10]. The screenshot of application is shown
in Fig. 7. It uses database functionality. In the first step of program a table in a
database is chosen. This table consists of inputs and outputs which are computed
from digital images of letters. Four Haralick features namely energy, entropy,
contrast, and correlation have been computed from co-occurrence matrices
obtained from the images of letters in English alphabet. The images were firstly
converted into gray levels. Then the total number of grey levels in the images
was reduced to 16 gray levels by histogram equalization method to compute the
co-occurrence matrices in shorter times since the computation time for each co-
occurrence matrix depends on the maximum grey level in each image. The 4
Haralick features were used as inputs to the Neural Network. The total number
of data was 653, the 279 of which have been used for training and the 374 of
which have been used for testing respectively. The output for each letter was
converted into sequential numbers since neural networks accept only numerical
values. Since number of data was high the training took nearly one hour.

Fig. 7. A sample program for Optical Character Recognition (OCR) using ANN component.

Development of a Cross-Platform Artificial Neural Network... 111

Again the development time for application took only two days. However,
this does not include the development time for the image processing including
gray level conversion, and the grey level reduction using histogram equaliza-
tion, the computation of co-occurrence matrices from images, and Haralick
features from co-occurrence matrices.

The CLX library components for database development make it very easy to
utilize database functionalities. Database management systems such as Inter-
Base, Oracle, IBM/DB2 are supported natively and any other Database Manage-
ment systems having Open Database Connectivity may be adopted within the
same application without any change. This is also true for multiple operating
systems, i.e. Windows and Linux. In the second step, all available table
columns are shown to be selected as input and output fields.

The values for input fields are computed beforehand from the characters.
After training and testing patterns are selected, the maximum and minimum
values for each column are calculated to be used for the definition of Neural
Network component. The classification performance after the tests reached
99%. This high performance may be due to one type of font used and clean
images obtained from computer screenshots. The performance is expected to be
lower in case of real images obtained through scanner and also the variation of
the fonts with different sizes. In that case, some other features rather than
texture features may be employed to increase the performance.

5. Conclusion

In this paper, an Artificial Neural Network software component is introduced
to use intelligence based on Artificial Neural Network functionality in a cross-
platform application development. This functionality can be embedded into any
software development project with very little code. The paper introduces two
case studies solved with this component in a very short time, the first as being a
general classifier and the second as a simple OCR learner. The main goals of
the study may be summarized as follows:

a) A General Framework for Description and Development of a Cross-
Platform Artificial Neural Network component: The component described here-
in may be run under Windows and Linux platforms.

b) Easiness in embedding Artificial Neural Networks functionality in new
applications by setting only some properties with minimal coding.

c) Use of Multiple networks simultaneously: One of the disadvantages of
ANNs is the trial-error basis setting of the number of hidden neurons, the learn-
ing parameters etc. This is overcome by creating a number of instances of
Neural Networks with different parameters and finding the best one with small-

G.B. Çetiner and H.M. Aburas112

est Rooted Mean Square (RMS) Error. The first case study shows such an
example.

d) Run-time Creation of Neural Network Component: The instance of the
component developed herein may be created not only in design-time by setting
properties but also in run-time. This makes the component very useful to be
embedded in web applications.

Acknowledgements

The authors thank the referees for their invaluable comments.

References

[1] Pham, D.T. and Liu, X., Neural Networks for Identification, Prediction and Control,
Springer-Verlag (1997).

[2] Hornik, K., Stinchcombe, M. and White, H., Multilayer feedforward networks are univer-
sal approximators, Neural Networks, 2 (5): 359-366 (1989).

[3] Jacobson, I., Booch, G. and Rumbaugh, J., The unified process, IEEE Software, 16 (3):
96-102 (1999).

[4] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F. and Jeremaes,
P., Object-Oriented Development: The Fusion Method, Prentice Hall, Englewood Cliffs,
NJ, Object-Oriented Series edition (1994).

[5] Glykas, M., Wilhelmij, P. and Holden, T., Object orientation in enterprise modeling and
information system design, IEE Colloquium on Object Oriented Development, 8 (1): 819
(1993).

[6] Lin, J.M., Cross-Platform Software Reuse by Functional Integration Approach, COMPSAC
'97-21st International Computer Software and Applications Conference: 402-408 (1997).

[7] Aburas, H.M. and Çetiner, B.G., Component Based Intelligent Systems Development
using Artificial Neural Networks, International Twelfth Turkish Symposium on Artificial
Intelligence and Neural Networks (2003).

[8] Lippman, R.P., An Introduction to computing with neural nets, IEEE ASSP Msg., 4: 4-22
(1987).

[9] Budinsky, F.J., Finnie, M.A., Vlissides, J.M. and Yu, P.S., Automatic Code Generation
from Design Patterns, IBM Systems Journal, 35 (2): 151-172 (1996).

[10] Haralick, R.M., Shanmugam, K. and Dinstein, I., Textural Features for Image Classifica-
tion, IEEE Trans. Systems, Man and Cybernetics, 3 (6): 610-621 (1973).

Development of a Cross-Platform Artificial Neural Network... 113

��b�F�� W�O�UMD$« W�O�B� UJ��� V�d� d�u�D�
W�O�� rEM� U�BM*«

�«� u�√ bL�� w�U� Ë ,sJ��u� Æw� ÆdM�O�
e�eF�« b�� pK*« WF�U� ,W�bMN�« WOK� ,WO�UMB�« W�bMN�« r��

W��uF��« WO�dF�« WJKL*« − �b����

 «uM��« w� U?BM*« ��b?F?�?� U?I?O?�D��« d�uD� `�?$√ ÆhK�?��*«
«dE�Ë , U?�uKF*« rE� U?O?�u�uM?J� �U�?� w� W?L?N*« �u?�_« s� �d?O?�_«
b?I?� W?HK?�?<« U?�?O?��« w� U?BM*« ��b??F?�?� Z�«d?�K� WM�U?J�« «�b?IK�
qO�?� vKF� ÆU?N� rOL?B��«Ë jOD�?�K� «Ë�√Ë �d� �u�Ë X�b�?��«
,oO?�D��« d�uD� ��Ë� q�«d?� q� rC� b�u*« jO?D���« W?G� Ê√ b$ �U?�*«
W?OMzUJ�« W�?�d?��« Â«b�?��U� U?BM*« ��b?F�?� «dH?A�« X�b?��?�« UL?�
UN�«b?���ô dO�?� qJA� WO�BF�« UJ�?A�« W�ON� p�c� - b?I�Ë Æt�u��«
,�b�bA�« W?��UMLK� «dE�Ë Æq�U� qJA�Ë qzU�*« s� l?�«Ë �U�� q� w�
�dOB� WOM�� �d�� w?� WLE�_« d�uD� s�«d�« X�u�« w� U��Ëd{ `�$√ bI�
 UJ�A�« wM�� UN?�ö� s� r�� WF�d� WI�d� v�≈ W?�U*« W�U(« v�≈ È�√ U2
w�U��U�Ë ��bF�*« U?BM*« UO��d� d�uD� ��Ë� w� WO�UMD$ô« W?O�BF�«
��b?F??�?� W?O??�UMD$« W?O??�?B??� UJ�?� «Ë�√ VKD?�� t?�u?�?�« «c� ÊS?�
W?G� W�?O� V�UM� UÎ�?�d� W?OLKF�« W?��u�« Ác� w� Âb?I� UM�S� p�c� Æ U?BM*«
V�d*« bz«u?� `?O?{u� q�?� t?BzU?B??� iF� g�UM�Ë ,b?�u*« j?OD�?��«

ÆWK��_« iF� ÷«dF��« �ö� s� Õd�I*«

